Background: Cardiovascular imaging using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI) requires a radio frequency phased array resonator capable of high acceleration factors in order to achieve the shortest breath-holds while maintaining optimal MRI signal-to-noise ratio (SNR) and minimum PET photon attenuation. To our knowledge, the only two arrays used today for hybrid PET/MRI cardiovascular imaging are either incapable of achieving high acceleration or affect the PET photon count greatly.Purpose: This study is focused on the evaluation of the MRI performance of a novel third-party prototype 32-channel phased array designed for simultaneous PET/MRI cardiovascular imaging. The study compares the quality parameters of MRI parallel imaging, such as g-factor, noise correlation coefficients, and SNR, to the conventional arrays (mMR 12-channel and MRI-only 32-channel) currently used with hybrid PET/MRI systems. The quality parameters of parallel imaging were estimated for multiple acceleration factors on a phantom and three healthy volunteers. Using a Germanium-68 (Ge-68) phantom, preliminary measurements of PET photon attenuation caused by the novel array were briefly compared to the photon counts produced from no-array measurements. Results: The global mean of the g-factor and SNR g produced by the novel 32-channel PET/MRI array were better than those produced by the MRI-only 32-channel array by 5% or more. The novel array has resulted in MRI SNR improvements of > 30% at all acceleration factors, in comparison to the mMR12-channel array. Preliminary evaluation of PET transparency showed less than 5% photon attenuation caused by both anterior and posterior parts of the novel array. Conclusions: The MRI performance of the novel PET/MRI 32-channel array qualifies it to be a viable alternative to the conventional arrays for cardiovascular hybrid PET/MRI. A detailed evaluation of the novel array's PET performance remains to be conducted, but cursory assessment promises significantly reduced attenuation.