Background: Metastatic glioblastoma presenting as a solitary osteolytic cervical vertebral mass without primary brain tumor relapse is extremely rare with only 1 reported case in the literature. Because of its rarity, it can be easily overlooked and misdiagnosed, posing a diagnostic dilemma. Case presentation: A 51-year-old man with right temporal glioblastoma was initially treated by tumor resection, radiotherapy and chemotherapy. Eighteen months after surgery, he was readmitted with complaints of neck pain for 2 weeks. Follow-up magnetic resonance imaging (MRI) and fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) revealed a solitary FDG-avid osteolytic lesion in the 4th cervical vertebral body without other abnormal FDG-uptake in the body and in the absence of local recurrence at the resection cavity. Because of the sudden worsening situation and intractable neck pain, the patient underwent tumor resection. Postoperatively, the pain was obviously reduced and the situation was improved. Interestingly, the immunohistochemical findings of glial fibrillary acidic protein (GFAP) indicated the characteristic of metastatic glioblastoma, despite that the histopathological findings of Hematoxylin & Eosin (H&E) staining was suspicious of osteoclastoma. According to the clinical history, imaging findings, pathological and immunohistochemical results, a final diagnosis of solitary vertebral metastasis from glioblastoma without central nervous system (CNS) relapse was confirmed. Then, the patient received radiotherapy on spine and adjuvant chemotherapy with temozolomide. However, he died suddenly 2 months after the tumor resection, nearly 21 months after the initial diagnosis. Conclusion: We emphasize that metastatic glioblastoma should be considered in the differential diagnosis of a solitary FDG-avid osteolytic vertebral mass on PET/CT. And the diagnosis of extracranial metastasis (ECM) from glioblastoma can be achieved through clinical history, imaging findings, pathological examination, and immunohistochemical staining with GFAP.