2012
DOI: 10.1109/tns.2012.2201170
|View full text |Cite
|
Sign up to set email alerts
|

PET Energy-Based Scatter Estimation in the Presence of Randoms, and Image Reconstruction With Energy-Dependent Scatter and Randoms Corrections

Abstract: In this paper, we address the problem of energy-based scatter estimation in PET in the presence of randoms. We refine a previous proposed model for comprehensive use of the energy information in PET [Phys. Med. Biol., vol. 51, pp. 2919-2937, 2006] by introducing a model for the random coincidences. This model is used to estimate the scatter components in randoms from delayed coincidence data, and then of the nonrandom coincidence scatters from the prompt coincidence data. By performing these estimations on a s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2013
2013
2019
2019

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 29 publications
0
2
0
Order By: Relevance
“…In reality, the use of scattered photons is complicated by the fact that the detected signal of a nonscattered 511 keV photon, when it deposits only part of its energy in the detector, resembles that of a lower-energy, object-scattered photon [34]. One solution may be the use of an object-scatter energy window above the Compton edge (at 341 keV) and below the photopeak, which is virtually free of detector-scattered photons ([40], Fig. 1).…”
Section: Discussionmentioning
confidence: 99%
“…In reality, the use of scattered photons is complicated by the fact that the detected signal of a nonscattered 511 keV photon, when it deposits only part of its energy in the detector, resembles that of a lower-energy, object-scattered photon [34]. One solution may be the use of an object-scatter energy window above the Compton edge (at 341 keV) and below the photopeak, which is virtually free of detector-scattered photons ([40], Fig. 1).…”
Section: Discussionmentioning
confidence: 99%
“…With list-mode acquisitions in modern PET and improved detector technology, the use of the energy of individual photons becomes feasible and some authors have proposed new approaches that include the energy information in the estimation of the scatter distribution and image reconstruction process [6,[26][27][28]. These approaches attempt to improve the accuracy of the rejection of scattered coincidences from measured data but are limited by the energy resolution of the detectors [29].…”
Section: Introductionmentioning
confidence: 99%