Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Positron emission tomography/magnetic resonance (PET/MR) imaging has gone through major hardware improvements in recent years, making it a reliable state-of-the-art hybrid modality in clinical practice. At the same time, image reconstruction, attenuation correction, and motion correction algorithms have significantly evolved to provide high-quality images. Part I of the current review discusses technical basics, pre-clinical applications, and clinical applications of PET/MR in radiation oncology and head and neck imaging. PET/MR offers a broad range of advantages in preclinical and clinical imaging. In the preclinic, small and large animal-dedicated devices were developed, making PET/MR capable of delivering new insight into animal models in diseases and facilitating the development of methods that inform clinical PET/MR. Regarding PET/MR’s clinical applications in radiation medicine, PET and MR already play crucial roles in the radiotherapy process. Their combination is particularly significant as it can provide molecular and morphological characteristics that are not achievable with other modalities. In addition, the integration of PET/MR information for therapy planning with linear accelerators is expected to provide potentially unique biomarkers for treatment guidance. Furthermore, in clinical applications in the head and neck region, it has been shown that PET/MR can be an accurate modality in head and neck malignancies for staging and resectability assessment. Also, it can play a crucial role in diagnosing residual or recurrent diseases, reliably distinguishing from oedema and fibrosis. PET/MR can furthermore help with tumour characterization and patient prognostication. Lastly, in head and neck carcinoma of unknown origin, PET/MR, with its diagnostic potential, may obviate multiple imaging sessions in the near future.
Positron emission tomography/magnetic resonance (PET/MR) imaging has gone through major hardware improvements in recent years, making it a reliable state-of-the-art hybrid modality in clinical practice. At the same time, image reconstruction, attenuation correction, and motion correction algorithms have significantly evolved to provide high-quality images. Part I of the current review discusses technical basics, pre-clinical applications, and clinical applications of PET/MR in radiation oncology and head and neck imaging. PET/MR offers a broad range of advantages in preclinical and clinical imaging. In the preclinic, small and large animal-dedicated devices were developed, making PET/MR capable of delivering new insight into animal models in diseases and facilitating the development of methods that inform clinical PET/MR. Regarding PET/MR’s clinical applications in radiation medicine, PET and MR already play crucial roles in the radiotherapy process. Their combination is particularly significant as it can provide molecular and morphological characteristics that are not achievable with other modalities. In addition, the integration of PET/MR information for therapy planning with linear accelerators is expected to provide potentially unique biomarkers for treatment guidance. Furthermore, in clinical applications in the head and neck region, it has been shown that PET/MR can be an accurate modality in head and neck malignancies for staging and resectability assessment. Also, it can play a crucial role in diagnosing residual or recurrent diseases, reliably distinguishing from oedema and fibrosis. PET/MR can furthermore help with tumour characterization and patient prognostication. Lastly, in head and neck carcinoma of unknown origin, PET/MR, with its diagnostic potential, may obviate multiple imaging sessions in the near future.
Introduction: There is growing interest in the development and application of standardized imaging criteria (SIC), to minimize variability and improve the reproducibility of image interpretation in head and neck squamous cell carcinoma (HNSCC). Methods: “Squamous cell carcinoma” AND “standardized interpretation criteria” OR “radiographic response assessment” were searched using PubMed and Google Scholar for articles published between 2009 and 2024, returning 56 publications. After abstract review, 18 were selected for further evaluation, and 6 different SICs (i.e., PERCIST, Porceddu, Hopkins, NI-RADS, modified Deauville, and Cuneo) were included in this review. Each SIC is evaluated in the context of 8 desired traits of a standardized reporting system. Results: Two SICs have societal endorsements (i.e., PERCIST, NI-RADS); four can be used in the evaluation of locoregional and systemic disease (i.e., PERCIST, Hopkins, NI-RADS, Cuneo), and four have specific categories for equivocal imaging results (i.e., Porceddu, NI-RADS, modified Deauville, and Cuneo). All demonstrated areas for future improvement in the context of the 8 desired traits. Conclusion: Multiple SICs have been developed for and demonstrated value in HNSCC post-treatment imaging; however, these systems remain underutilized. Selecting an SIC with features that best match the needs of one’s practice is expected to maximize the likelihood of successful implementation.
Because of an estimated 20–30% prevalence of occult lymph node (LN) metastases in patients with head and neck squamous cell carcinoma (HNSCC), neck dissection is often proposed, despite its potential morbidity. In this systematic review and meta-analysis, the diagnostic performance of FDG PET-CT in detecting occult LN metastases was evaluated in patients with clinically negative necks (cN0) and in whom histopathology of a neck dissection specimen served as gold standard. Overall, 16 studies out of 2062 screened on PubMed and EMBASE fulfilled the inclusion criteria (n = 1148 patients). Seven of these sixteen studies were split into two or three studies because they contained data that could be processed distinctly in our meta-analysis. For this reason, a total of 25 studies were identified and included in the analysis (n total = 1918 patients). The overall prevalence of metastatic nodes per patient was 22.67%. The pooled sensitivity, specificity, diagnostic odds ratios, and negative predictive value (NPV) were 0.71 (95%CI: 0.66–0.75), 0.90 (95%CI: 0.84–0.93), 20.03 (95%CI: 13.51–29.70), and 0.92 (95%CI: 0.89–0.95), respectively. The main causes of inter-study heterogeneity included different reference standards (evaluation per patient, per neck side, or per neck level). The current meta-analysis showed that FDG PET-CT has a high specificity and NPV for ruling out nodal involvement in cN0 necks, but a limited sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.