Body size is one of the most significant features of animals. Not only is it correlated with many life history and ecological traits, but it also may influence the abundance of species within, and their membership of, assemblages. Understanding of the latter processes is frequently based on a comparison of model outcomes with the frequency of species of different body mass within natural assemblages. Consequently, the form of these frequency distributions has been much debated. Empirical data usually concern taxonomically delineated groups, such as classes or orders, whereas the processes ultimately apply to whole assemblages. Here, we report the most complete animal species-body size distribution to date for those free-living species breeding on sub-Antarctic Marion Island and using the terrestrial environment. Extending over 15 orders of magnitude of variation in body mass, this distribution is bimodal, with separate peaks for invertebrates and vertebrates. Under logarithmic transformation, the distribution for vertebrates is not significantly skewed, whereas that for invertebrates is right-skewed. Contrary to expectation based on a fractal or pseudofractal environmental structure, the decline in the richness of species at the smallest body sizes is a real effect and not a consequence of unrecorded species or of species introductions to the island. The scarcity of small species might well be a consequence of their large geographic ranges.