Coker kero stream is obtained from delayed coking which contains saturates with alpha olefins and PNA compounds which was physicochemical characterised. The fractions present in coker kero may be used further for value added products such as alkyl benzene and naphthalene etc. The study described potential of coker kero via aromatics and non-aromatics separation by using liquid-liquid extraction (LLE) with N-methyl pyrrolidone (NMP), acetonitrile and methanol as solvents of different polarity. Methanol imparts best colour improvement as per ASTM D-1500. Beside this, adsorption study on coker kero was performed using fuller’s earth, chalk powder, red ochre and wood-stick’s ash as adsorbents. The adsorption study suggested that fuller’s earth not only separate aromatics and non-aromatics form coker kero, but also acts as a better adsorbent than graphitic carbon (activated charcoal) and is found suitable for colour improvement comparatively. This study inferred the separation of polar components, improvement in the colour, odour and established the stable fuel. FT-IR study suggested that N-methyl Pyrrolidone gives better results comparatively other solvents. HC22 type analysis of coker kero raffinate and extract phase confirm the sharp extraction of coker kero feed using N-Methyl pyrrolidone as it is a good solvent for extraction of aromatics. GCMS and HRMS compositional analysis successfully performed for the coker kero and it is separated aromatic and non-aromatic fractions.