Targeting of peroxisomal membrane proteins (PMPs) is a multistep process that requires not only recognition of PMPs in the cytosol but also their insertion into the peroxisomal membrane. As a consequence, targeting signals of PMPs (mPTS) are rather complex. A candidate protein for the PMP recognition event is Pex19p, which interacts with most PMPs. However, the respective Pex19p-binding sites are ill-defined and it is currently disputed whether these sites are contained within mPTS. By using synthetic peptide scans and yeast two-hybrid analyses, we determined and characterized Pex19p-binding sites in Pex11p and Pex13p, two PMPs from Saccharomyces cerevisiae. The sites turned out to be composed of a short helical motif with a minimal length of 11 amino acids. With the acquired data, it proved possible to predict and experimentally verify Pex19p-binding sites in several other PMPs by applying a pattern search and a prediction matrix. A peroxisomally targeted Pex13p fragment became mislocalized to the endoplasmic reticulum in the absence of its Pex19p-binding site. By adding the heterologous binding site of Pex11p, peroxisomal targeting of the Pex13p fragment was restored. We conclude that Pex19p-binding sites are well-defined entities that represent an essential part of the mPTS.
INTRODUCTIONPeroxisomes are ubiquitous organelles of eukaryotic cells, whose proteins are imported posttranslationally. Matrix proteins are directed to peroxisomes by either of two targeting signals, a C-terminal PTS1 or an N-terminal PTS2. The topogenesis of peroxisomal membrane proteins (PMPs) is accomplished by yet another mechanism, because most of the peroxin mutants, characterized by their defect in the biogenesis of peroxisomes, exhibit a block in matrix protein import, but do import PMPs normally (Lazarow and Fujiki, 1985;Gould and Valle, 2000;Subramani et al., 2000;Purdue and Lazarow, 2001;Eckert and Erdmann, 2003). To date, only three peroxins with a potential role in PMP targeting have been identified, namely Pex3p (Hettema et al., 2000;South et al., 2000), Pex16p in mammals (South and Gould, 1999;Honsho et al., 2002), and Pex19p (Gö tte et al., 1998;Matsuzono et al., 1999;Snyder et al., 1999;Soukupova et al., 1999). In cells lacking any of these proteins, PMPs are either degraded or mistargeted to other subcellular compartments such as mitochondria, the endoplasmic reticulum (ER) and membranes of unknown origin (Ghaedi et al., 2000;Hettema et al., 2000;Sacksteder et al., 2000).In accordance with a distinct pathway, PMPs use neither PTS1 nor PTS2. The targeting signals of PMPs (mPTS) that direct and insert PMPs into the peroxisomal membrane have been determined for a number of PMPs of several species. Despite some differences, a picture emerged from these studies of a targeting signal consisting of one or more transmembrane domains in conjunction with a short sequence, which contains either a cluster of basic residues or a mixture of basic and hydrophobic amino acids (Dyer et al., 1996;Baerends et al., 2000b;Pause et al., 2000;...