Per-and polyfluoroalkyl substances (PFAS) constitute a notorious category of anthropogenic contaminants, detected across various environmental domains. Among these PFAS, perfluoroalkyl acids (PFAAs) stand out as a focal point in discussions due to their historical industrial utilization and environmental prominence. Their extensive industrial adoption is a direct consequence of their remarkable stability and outstanding amphiphilic properties. However, these very traits that have made PFAAs industrially desirable also render them environmentally catastrophic, leading to adverse consequences for ecosystems. The amphiphilic nature of PFAAs has made them highly unique in the landscape of anthropogenic contaminants and, thereby, difficult to study. We believe that well-established principles from surface science can connect the amphiphilic nature of PFAAs to their accumulation and transport in the environment. Specifically, we discuss the role of interfacial science in describing the stability, interfacial uptake (air−liquid and solid−liquid), and wetting capability of PFAAs. Surface science principles can provide new insights into the environmental fate of PFAAs, as well as provide context on their deleterious effects on both the environment and human health.