Key Points• Plasmodium falciparumgenerated cytoadherent knobs on infected erythrocytes contain a spiral framework linked to the red cell cytoskeleton.• The findings suggest a structural basis for transmission of shear forces in adhesion of infected cells.Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells. (Blood. 2016;127(3):343-351)
IntroductionPlasmodium falciparum malaria remains one of the leading causes of child deaths globally, with the majority of cases occurring in subSaharan Africa and Southeast Asia. Although chemopreventive and vector control initiatives led to an estimated 42% reduction in mortality rates between 2000 and 2012, the emergence of artemisinin resistance highlights the importance of continued efforts to understand and interfere with the biology of the parasite.
1Of the 5 Plasmodium species capable of infecting humans, P falciparum and P vivax are the most prevalent, with P falciparum causing 90% of malaria-related deaths. P falciparum-infected erythrocytes become cytoadherent, causing erythrocyte sequestration in the microvasculature and avoiding clearance of infected cells by the spleen.2 Much of the virulence of P falciparum malaria has been attributed to this cytoadherence, which impedes blood circulation and results in severe syndromes such as cerebral or placental malaria.
2-4The dominant ligand mediating cytoadherence is PfEMP1, a major variable erythrocyte...