Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This paper describes experiments on cultured granulosa cells isolated from ovaries of immature rats designed to locate the site of action of androgens on FSH-induced aromatase activity. Treatment of cells during a 36-h induction period with (Bu)2cAMP, 8- BrcAMP , FSH, prostaglandin E2, or cholera toxin resulted in induction of aromatase activity measured as 17 beta-estradiol accumulation during a 6-h test period with testosterone (5 X 10(-7) M) added to medium as substrate. Presence of testosterone (5 X 10(-7) M) during the induction period enhanced the effects of FSH, cholera toxin, and prostaglandin E2 on aromatase activity, but not those of the cAMP analogs. The effects of culturing and steroids on responsiveness of granulosa cells to FSH (measured as FSH-stimulated cAMP production during a 1-h test period) were examined. The data showed that culturing in medium alone for 36 h resulted in a decrease in the ability of FSH to stimulate cAMP production when compared to that of freshly isolated cells. After culture with testosterone (5 X 10(-7) M), dihydrotestosterone (DHT) (5 X 10(-7) M), or 17 beta-estradiol (5 X 10(-7) M), responsiveness was at least partially restored. After treatment with progesterone (5 X 10(-7) M), FSH stimulation of cAMP production was not significantly different from that of cells cultured in medium alone. Hydroxyflutamide (5 X 10(-5) M), an antiandrogen known to block androgen-receptor interaction, abolished the effect of DHT and depressed the effect of testosterone on responsiveness of granulosa cells to FSH. Cells treated for 36 h with testosterone (5 X 10(-7) M) bound significantly more [125I]iodo-FSH than cells cultured in medium alone. Although DHT (5 X 10(-7) M) slightly increased FSH binding, the effect was not statistically significant. These results suggested that androgens regulate granulosa cell aromatase activity not only as substrates, but also by acting at a site before cAMP production (possibly at the level of the FSH receptor) in the control of FSH-induced enzyme activity.
This paper describes experiments on cultured granulosa cells isolated from ovaries of immature rats designed to locate the site of action of androgens on FSH-induced aromatase activity. Treatment of cells during a 36-h induction period with (Bu)2cAMP, 8- BrcAMP , FSH, prostaglandin E2, or cholera toxin resulted in induction of aromatase activity measured as 17 beta-estradiol accumulation during a 6-h test period with testosterone (5 X 10(-7) M) added to medium as substrate. Presence of testosterone (5 X 10(-7) M) during the induction period enhanced the effects of FSH, cholera toxin, and prostaglandin E2 on aromatase activity, but not those of the cAMP analogs. The effects of culturing and steroids on responsiveness of granulosa cells to FSH (measured as FSH-stimulated cAMP production during a 1-h test period) were examined. The data showed that culturing in medium alone for 36 h resulted in a decrease in the ability of FSH to stimulate cAMP production when compared to that of freshly isolated cells. After culture with testosterone (5 X 10(-7) M), dihydrotestosterone (DHT) (5 X 10(-7) M), or 17 beta-estradiol (5 X 10(-7) M), responsiveness was at least partially restored. After treatment with progesterone (5 X 10(-7) M), FSH stimulation of cAMP production was not significantly different from that of cells cultured in medium alone. Hydroxyflutamide (5 X 10(-5) M), an antiandrogen known to block androgen-receptor interaction, abolished the effect of DHT and depressed the effect of testosterone on responsiveness of granulosa cells to FSH. Cells treated for 36 h with testosterone (5 X 10(-7) M) bound significantly more [125I]iodo-FSH than cells cultured in medium alone. Although DHT (5 X 10(-7) M) slightly increased FSH binding, the effect was not statistically significant. These results suggested that androgens regulate granulosa cell aromatase activity not only as substrates, but also by acting at a site before cAMP production (possibly at the level of the FSH receptor) in the control of FSH-induced enzyme activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.