PGNets: Planet mass prediction using convolutional neural networks for radio continuum observations of protoplanetary disks
Shangjia Zhang,
Zhaohuan Zhu,
Mingon Kang
Abstract:We developed Convolutional Neural Networks (CNNs) to rapidly and directly infer the planet mass from radio dust continuum images. Substructures induced by young planets in protoplanetary disks can be used to infer the potential young planets' properties. Hydrodynamical simulations have been used to study the relationships between the planet's properties and these disk features. However, these attempts either fine-tuned numerical simulations to fit one protoplanetary disk at a time, which was time-consuming, or… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.