“…In contrast to the negative effect of some soil-borne pathogens on Fe acquisition, there are several recent reviews showing an important role of beneficial rhizosphere microbes on the Fe nutrition of plants ( Jin et al, 2014 ; Mimmo et al, 2014 ; Pii et al, 2015 ; İpek and Esitken, 2017 ). These microbes can directly improve Fe nutrition through the release of H + and/or Fe- solubilizing compounds to soils, like siderophores and organic acids, or by inducing changes in root physiology and architecture, which can improve the acquisition of Fe and also of other nutrients ( Orozco-Mosqueda et al, 2013 ; Jin et al, 2014 ; Mimmo et al, 2014 ; Zhao et al, 2014 ; Contreras-Cornejo et al, 2015 ; Pii et al, 2015 , 2016b ; Garnica-Vergara et al, 2016 ; Scagliola et al, 2016 ; Verbon and Liberman, 2016 ; Zhou et al, 2016a , b ; Martínez-Medina et al, 2017 ; Sonbarse et al, 2017 ; Sharifi and Ryu, 2018 ; Stringlis et al, 2018a ). In this way, it has been demonstrated that ISR-eliciting microbes can induce Fe deficiency responses in their host roots, such as enhanced ferric reductase activity, acidification of the rhizosphere, release of phenolics and flavins, and development of root hairs; and the expression of the genes associated with these responses, such as FIT , bHLH38 , bHLH39 , MYB72 , MYB10 , FRO2 , IRT1 , AHA , F6′H1 , BGLU42 , ABCG37 , and others ( Figure 1 , 2 and Table 1 ; Ribaudo et al, 2006 ; Zhang et al, 2009 ; Zamioudis et al, 2014 , 2015 ; Zhao et al, 2014 ; Pii et al, 2016b ; Scagliola et al, 2016 ; Verbon and Liberman, 2016 ; Zhou et al, 2016a , b , 2018 ; Martínez-Medina et al, 2017 ; Verbon et al, 2017 ; see also Section “Fe deficiency responses in dicot plants” and Section “Rhizosphere microbial species that induce Fe deficiency responses and improve Fe acquisition”).…”