The photosensitizer mechanism by the psoralen (PSO) reacts to produce reactive oxygen species has not been thoroughly studied; thus, this work was carried out a study of the reaction and mechanism involved in the photosensitizer activity of PSO, employing M06‐2X/6‐311++G(d,p) of the density functional theory. There is a competition between the generation of radical anion superoxide (type I mechanism) and the singlet oxygen molecule (type II mechanism) in lipid media; therefore, the ROS anion superoxide and singlet oxygen could be formed as products of the reaction involved in the photosensitizer activity of PSO in lipid media. In aqueous media, the reaction involved in the photosensitizer activity of PSO was only attributed to the type I mechanism; hence, in aqueous media, the photosensitizer activity of PSO yielded the anion superoxide. The present study supports the photosensitizer activity of the PSO in lipid and aqueous media. It enhances the knowledge of these reactions in different media and their application to reactivity, including the physiology media.