Supramolecular light-absorbing nanostructures are useful building blocks for the design of next-generation artificial photosynthetic systems. Development of such systems requires a detailed understanding of how molecular packing influences the materialâs optoelectronic properties. We describe a series of crystalline supramolecular nanostructures in which the substituents on their monomeric units strongly affects morphology, ordering kinetics, and exciton behavior. By designing constitutionally-isomeric perylene monoimide (PMI) amphiphiles, the effect of side chain sterics on nanostructure crystallization was studied. Molecules with short amine linked alkyl-tails rapidly crystallize upon dissolution in water, while bulkier tails require the addition of salt to screen electrostatic repulsion and annealing to drive crystallization. A PMI monomer bearing a 3-pentylamine tail was found to possess a unique structure that results in strongly red-shifted absorbance, indicative of charge-transfer exciton formation. This particular supramolecular structure was found to have an enhanced ability to photosensitize a thiomolybdate, [(NH4)2Mo3S13], catalyst to generate hydrogen gas.