IrOx electrodes were fabricated by cyclic thermal heating and water quenching (CHQ) process and high temperature carbonate oxidation (HCO), respectively. By examining the E-pH relationship, response rate, potential drift behavior of the fabricated electrodes, the electrodes prepared by CHQ process seemed to show better comprehensive performance. Characterization tests such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and electrochemical impedance spectroscopy (EIS) were used to characterize the fabricated IrOx electrodes and find out the reason for the better performance of the electrodes prepared by CHQ process. Morphology tests indicate that the CHQ electrode shows a multi-layer structure with more ion channels, which could provide larger surface area for the H+ response process. Furthermore, combining the XPS, Raman and EIS tests etc., more effective response composition, better crystal quality, and smaller response reaction resistance of surface IrOx film could account for the better performance of the CHQ-fabricated IrOx electrode. The film formation process, H+ response mechanism, as well as the response behavior difference between the two kinds of the electrodes are further elaborated.