We report accurate characterization, modelling and simulation of SOI nanoribbon-based pH sensors and we compare operation in air (dry) and electrolyte (wet) environments. We find remarkably different current density distributions and geometry scaling rules, but similar series resistances and active trap state densities in the two configurations. Calibrated TCAD based simulations implementing an original approach to model the site-binding harge, and in good agreement with experiments, provide the necessary insights to interpret the non trivial dependence of the threshold voltage and current sensitivity on pH