In this Article, we present a strategy to visually track chemically triggered covalent bonding processes in gelation, remodeling, and degradation of soft materials, i.e., hydrogels, based on a new photoluminescence platform. Initially in the development of photoluminophors named "indanonalkenes", turnon emission can be tracked and quantified in the optical reaction between a conjugate acceptor and amine derivatives. On this basis, fluorescence enhancement and mechanical changes were recorded during the gelation process through amine−thiol exchanges under organic and aqueous conditions. Next in macromolecular remodeling, we realized a stimulus-induced transformation of one architecture into another one, exploiting the orthogonality of chemical covalent bonding that could be visualized using luminescence. Furthermore, the hydrogel network can be degraded to release the coupling partner induced by ethylene diamine, and the process can be monitored using fluorescence changes and quantified through gel permeation chromatography, while the released components can be utilized again to regenerate a new hydrogel. In addition, the photographic images provide alternatives to fluorescence spectra and can be digitally processed to quantify the macroscopic changes, resulting in a photographic imaging approach. The real-time observation and quantification of chemically triggered polymeric formation, morphology, and degradation through luminescence in spatial and time scales herald a new generation of "smart" materials.