Effective screening of the toxicity of chemicals using living organisms has been considered as a major issue of environmental biomonitoring. The principle of toxicity screening involves the quantitation of toxin-induced shift of biological response or tissue morphology of test species both in vivo and in vitro. Most of the toxin appears to function as biological response modifiers at a defined concentration and span of exposure. In recent years, invertebrates have been gaining a special scientific attention for being utilized as suitable model for toxicity screening. Invertebrates like crab, mollusks, sponge, and earthworm have already been established as model organisms for toxicity screening and analyses. " number of environmental toxins like arsenic, pyrethroid, pesticides, heavy metals, and washing soda can be screened for their toxicities using invertebrate species. Cellular and subcellular parameters like blood cell density, lysosomal membrane stability, cellular damage, apoptosis, micronucleation, and cytotoxic response of invertebrates had been established as biomarkers of environmental toxicity. Toxin-induced histopathological and behavioral shift had been suggested as effective parameters of toxicity screening in model invertebrates. However, reactivity and responses of invertebrates toward xenobiotics are often recorded to be species specific and related to the chemistry of the toxin. Current article reviews different levels of toxicity screening using invertebrate as test model.