Central Vietnam is characterized by severe flooding associated with heavy rainfall events caused by interactions between multiscale atmospheric circulations and the complex local terrain. Previous studies believed rainfall in central Vietnam is closely related to the cold surge; however, it fails to explain the cause of the early rainfall occurrence in August in the subregion. For the first time, this study investigates the detailed atmospheric mechanisms associated with rainfall variations in central Vietnam using the empirical orthogonal function (EOF) applied to the recently developed high-resolution Vietnam gridded precipitation (VnGP) dataset. Reanalysis data NCEP/NCAR is used to associate the rainfall changes with respective atmospheric mechanisms. EOF analysis detected two dominant rainfall modes. The primary mode explains the rainfall variation from October to November over the central and is directly related to the interaction of cold surges and tropical disturbances. The second mode accounts for rainfall occurring in north central from September to mid-October, which is attributed to the westerly summer monsoon activities. Also, we revealed that, while the first mode exhibits a significant correlation with El Niño-southern oscillation, the second depends highly on the contrast of sea surface temperature in the northern and southern Hemispheres. This different oceanic forcing and the local topological effect of Truong Son mountain range reasonably explain the opposite rainfall pattern in central Vietnam in early fall.