The shading cue is supposed to be a major factor in monocular stereopsis. However, the hypothesis is hardly corroborated by available data. For instance, the conventional stimulus used in perception research, which involves a circular disk with monotonic luminance gradient on a uniform surround, is theoretically ‘explained’ by any quadric surface, including spherical caps or cups (the conventional response categories), cylindrical ruts or ridges, and saddle surfaces. Whereas cylindrical ruts or ridges are reported when the outline is changed from circular to square, saddle surfaces are never reported. We introduce a method that allows us to differentiate between such possible responses. We report observations on a number of variations of the conventional stimulus, including variations of shape and quality of the boundary, and contexts that allow the observer to infer illumination direction. We find strong and expected influences of outline shape, but, perhaps surprisingly, we fail to find any influence of context, and only partial influence of outline quality. Moreover, we report appreciable differences within the generic population. We trace some of the idiosyncrasies (as compared to shape from shading algorithms) of the human observer to generic properties of the environment, in particular the fact that many objects are limited in size and elliptically convex over most of their boundaries.