Purpose
The study aims to provide insights on the practicality of using single-element transducers for transcranial Focused Ultrasound (tFUS) thermal applications.
Methods
FUS sonications were performed through skull phantoms embedding agar-based tissue mimicking gels using a 1 MHz single-element spherically focused transducer. The skull phantoms were 3D printed with Acrylonitrile Butadiene Styrene (ABS) and Resin thermoplastics having the exact skull bone geometry of a healthy volunteer. The temperature field distribution during and after heating was monitored in a 3 T Magnetic Resonance Imaging (MRI) scanner using MR thermometry. The effect of the skull’s thickness on intracranial heating was investigated.
Results
A single FUS sonication at focal acoustic intensities close to 1580 W/cm2 for 60 s in free field heated up the agar phantom to ablative temperatures reaching about 90 °C (baseline of 37 °C). The ABS skull strongly blocked the ultrasonic waves, resulting in zero temperature increase within the phantom. Considerable heating was achieved through the Resin skull, but it remained at hyperthermia levels. Conversely, tFUS through a 1 mm Resin skull showed enhanced ultrasonic penetration and heating, with the focal temperature reaching 70 °C.
Conclusions
The ABS skull demonstrated poorer performance in terms of tFUS compared to the Resin skull owing to its higher ultrasonic attenuation and porosity. The thin Resin phantom of 1 mm thickness provided an efficient acoustic window for delivering tFUS and heating up deep phantom areas. The results of such studies could be particularly useful for accelerating the establishment of a wider range of tFUS applications.