The profiles of circulating ecdysteroids during the three molt cycles prior to adulthood were monitored from the juvenile blue crab, Callinectes sapidus. Ecdysteroid patterns are remarkably similar in terms of peak concentrations ranging between 210-330 ng/ml hemolymph. Analysis of hemolymph at late premolt stage revealed six different types of ecdysteroids with ponasterone A (PoA) and 20-OH ecdysone (20-OH E) as the major forms. This ecdysteroid profile was consistent in all three molt cycles. Bilateral eyestalk ablation (EA) is a procedure that removes inhibitory neurohormones including crustacean hyperglycemic hormone (CHH) and molt-inhibiting hormone (MIH) and often results in precocious molting in crustaceans. However, the inhibitory roles of these neuropeptides in vivo have not yet been tested in C. sapidus. We determined the regulatory roles of CHH and MIH in the circulating ecdysteroid from ablated animals through daily injection. A daily administration of purified native CHH and MIH at physiological concentration maintained intermolt levels of ecdysteroids in the EA animals. This suggests that Y organs (YO) require a brief exposure to CHH and MIH in order to maintain the low level of ecdysteroids. Compared to intact animals, the EA crabs did not exhibit the level of peak ecdysteroids, and the major ecdysteroid turned out to be 20-OH E, not PoA. These results further underscore the important actions of MIH and CHH in ecdysteroidogenesis, as they not only inhibit, but also control the composition of output of the YO activity.