Information processing services are becoming increasingly pervasive, such as is demonstrated by the Internet of Things or smart grids. Given the importance that these services have reached in our daily life, the demand for security and privacy in the data processing appears equally large. Preserving the privacy of data during its processing is a challenging issue that has led to ingenious new cryptographic solutions, such as fully homomorphic encryption (to name only one). An optimal cryptographic support for private data processing must in any case be scalable and lightweight. To this end, we discuss the application of standard (off-the-shelf) cryptography to enable the computation of any function under permanent disguise (encryption). Using a local form of multiparty computation (essentially in a non-distributed fashion), we show how to execute any data processing algorithm in complete privacy. Our solution can, for example, be used with smart grid equipment, when small hardware security modules are locally available (such as in smart meters).