Purpose
To characterize proliferative changes in tumors during the sunitinib malate exposure/withdrawal using 3′-Deoxy-3′-[18F]fluorothymidine (FLT) PET/CT imaging.
Patients and Methods
Patients with advanced solid malignancies and no prior anti-VEGF exposure were enrolled. All patients had metastatic lesions amenable to FLT PET/CT imaging. Sunitinib was initiated at the standard dose of 50 mg PO daily either on a 4/2 or 2/1 schedule. FLT PET/CT scans were obtained at baseline, during sunitinib exposure, and after sunitinib withdrawal within cycle #1 of therapy. VEGF levels and sunitinib pharmacokinetic data were assessed at the same time points.
Results
16 patients (8 pts on 4/2 schedule; 8 pts on 2/1 schedule) completed all three planned FLT PET/CT scans, and were evaluable for pharmacodynamic imaging evaluation. During sunitinib withdrawal (change from scan 2 to 3), median FLT PET SUVmean increased +15% (range −14% to +277%) (p=0.047) for the 4/2 schedule and +19% (range −5.3% to +200%) (p=0.047) for the 2/1 schedule. Sunitinib PK and VEGF ligand levels increased during sunitinib exposure, and returned towards baseline during the treatment withdrawal.
Conclusions
The increase of cellular proliferation during sunitinib withdrawal in patients with renal cell carcinoma and other solid malignancies is consistent with a VEGFR TKI withdrawal flare. Univariate and multivariate analysis suggest that plasma VEGF is associated with this flare, with an exploratory analysis implying that patients who experience less clinical benefit have a larger withdrawal flare. This might suggest that patients with a robust compensatory response to VEGFR TKI therapy experience early “angiogenic escape”.