Alcohol and nicotine are frequently co-used and co-abused, and use of both drugs alone can affect hepatic drug metabolism. We investigated the influences of chronic nicotine treatment and voluntary ethanol intake on the induction of rat hepatic cytochrome P450 (CYP) enzymes that metabolize ethanol and nicotine. Rats were trained to voluntarily drink ethanol (6% v/v, 1 h) with nicotine pretreatment for 10 days. Another group of rats were treated with the same nicotine doses alone. Hepatic CYP2E1, CYP2B1/2 and CYP2D1 proteins were assessed by immunoblotting. Nicotine pretreatment (0.4, 0.8 and 1.2 mg/kg) increased voluntary ethanol intake on day 10 by 1.8, 2.0, and 1.4 fold respectively compared to saline pretreatment (P<0.01-0.3). CYP2E1 was increased 1.7, 1.8, and 1.4 fold by the three doses of nicotine alone (P<0.02-0.21); CYP2E1 levels were increased by voluntary ethanol intake alone and a further 2.4, 2.2, and 1.8 fold by 0.4, 0.8, and 1.2 mg/kg nicotine respectively versus saline pretreatment (P<0.002-0.06). CYP2B1/2 proteins were not induced by nicotine alone, but were increased by 2.2-2.5 fold by ethanol drinking (P<0.05). CYP2E1 (r=0.67, P<0.001) and CYP2B1/2 levels (r=0.49, P=0.007) correlated with alcohol consumption on day 10. There was no change in CYP2D1. Chronic nicotine increased voluntary ethanol intake thereby enhancing CYP2E1 and CYP2B1/2 levels. Thus CYPs are regulated not only directly by nicotine and ethanol, but also indirectly via an increase in the ethanol consumption in the presence of nicotine pretreatment. Together this may contribute to the co-abuse of these drugs and alter the metabolism of clinical drugs and endogenous substrates.