Background: The international drug agencies annotate pharmacogenes for many years. Pharmacogenetic testing is thus far only established in few settings, assuming that only few patients are actually affected by drug-gene interactions. Methods: 108 hospitalized patients with major depressive disorder were genotyped for CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, NAT2, DPYD; VKORC1 and TMTP. Results: We found 583 (mean 5.4, median 5) divergent phenotypes (i.e., divergent from the common phenotypes considered normal, e.g., extensive metabolizer) in the 12 analyzed pharmacokinetic genes. The rate for at least one divergent phenotype was 100% in our cohort for CYP, but also for all 12 important pharmacogenes: patients had at least two divergent phenotypes. Compared to a large Danish cohort, CYP2C9 NM and IM status, CYP2C19 UM, CYP2D6 UM and DYPD (GAS 0, 1, 2) genotypes differed statistical significantly. For CYP2D6 and CYP2C19, 13% of the patients were normal metabolizers for both enzymes in our cohort, but this value was 27.3% in the Danish cohort, which is a highly significant difference (p < 0.0001). Conclusion: Divergent phenotypes in pharmacogenes are not the exception, but the rule. Patients with divergent phenotypes seem more prone for hospitalization, emphasizing the need for pre-emptive testing to avoid inefficacy and adverse drug effects in all patients.