The clinical utility of many peptide and protein drugs is limited by their short in-vivo half-life. To address this limitation, we report a new class of polypeptide-based materials that have a long plasma circulation time. The design of these polypeptides is motivated by the hypothesis that incorporating a zwitterionic sequence, within an intrinsically disordered polypeptide motif, would impart "stealth" behavior to the polypeptide and increase its plasma residence time, a behavior akin to that of synthetic stealth polymers. We designed these zwitterionic polypeptides (ZIPPs) with a repetitive (VPX 1 X 2 G) n motif, where X 1 and X 2 are cationic and anionic amino acids, respectively, and n is the number of repeats. To test this hypothesis, we synthesized a set of ZIPPs with different pairs of cationic and anionic residues with varied chain length. We show that a combination of lysine and glutamic acid in the ZIPP confer superior pharmacokinetics, for both intravenous and subcutaneous administration, compared to uncharged control polypeptides.Finally, to demonstrate their clinical utility, we fused the best performing ZIPP sequence to glucagon-like peptide-1 (GLP1), a peptide drug used for treatment of type-2 diabetes and show Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Supporting InformationSupporting Information is attached. The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.