Ziel dieser Doktorarbeit war es, die Bedeutung der Kristallstrukturbestimmung aus Pulverdaten (SDPD) herauszuarbeiten und etwaige Grenzen durch neue Methodenentwicklungen zu erweitern, insbesondere bei Analyse der Paarverteilungsfunktion (PDF). Die Effizienz der SDPD konnte anhand der erfolgreich gelösten Kristallstruktur von Carmustin (1,3 Bis-2-chlorethyl-1-nitrosoharnstoff, C5H9Cl2N3O2) aufgezeigt werden. [CS01] Die Grenzen der SDPD wurden ausgelotet und erfolgreich erweitert. Nach weit verbreiteter kristallographischer Meinung ist die Strukturlösung mittels des simulierten Temperns (simulated annealing, SA) bei mehr als 25 zu bestimmenden Parametern problematisch oder unmöglich. Die pharmazeutischen Salze Lamivudin-Camphersulfonat (LC) und Aminogluthethimid-Camphersulfonat (AC) konnten, trotz ihrer hohen Anzahl an Freiheitsgraden von 31 für LC bzw. 37 für AC erfolgreich bestimmt werden. Die Strukturlösung von AC war herausfordernd und nicht direkt bei Anwendung der SA-Methode möglich. Nach einer intensiven Fehleranalyse stellte sich heraus, dass nicht die Grenzen der SA-Methode ausschlaggebend für das anfängliche Scheitern der Strukturlösung waren, sondern falsch extrahierte Intensitäten des vorangegangenen Pawley-Fits. Nach Behebung dieser Fehlerquelle war die Strukturlösung von AC problemlos. [CS02] Mittels SDPD kann die absolute Konfiguration chiraler Verbindungen nicht direkt bestimmt werden. Durch Kristallisation der zu bestimmenden chiralen Verbindung mit einem chiralen Gegenion bekannter Konformation in einer simplen Säure-Base-Reaktion zu einem diastereomeren Salz und nachfolgender SDPD konnte eine neue Methode entwickelt werden, um die Konfigurationsbestimmung aus Pulverdaten zu ermöglichen. Diese Methode wurde anhand der drei pharmazeutischen Salze (R)-Flurbiprofen-(R)-Chinin (FQ), (2R5S)-Lamivudin-(R)-Camphersulfonat (LC) und (R)-Aminogluthethimid-(R)-Camphersulfonat (AC) aufgezeigt: In allen drei Fällen konnte die korrekte Konfiguration des pharmazeutischen Wirkstoffes mit den hierfür entwickelten Kriterien erfolgreich bestimmt werden. [CS03, CS04] Durch Kombination der klassischen SDPD mit neuen methodischen Ansätzen konnten die Kristallstrukturen der schlecht kristallinen organischen Pigmente 2-Monomethylchinacridon (MMC, C21H14N2O2) und 4,11-Difluorchinacridon (DFC, C20H10N2O2F2) bestimmt werden, obwohl aufgrund ihrer geringen Kristallqualität keine sinnvolle Indizierung möglich war. Für die Kristallstrukturbestimmung von DFC lieferte der neu entwickelte Global-Fit des Programms FIDEL mögliche Strukturmodelle mit ähnlich guter Übereinstimmung an das experimentelle Pulverdiagramm. Die Rietveld-Verfeinerung der Strukturmodelle in Kombination mit der Anpassung der Kristallstruktur an die PDF-Daten und kraftfeldbasierter Gitterenergieminimierung konnte einen geeigneten Strukturrepräsentanten von DFC liefern. [CS05, CS06] Im Fall von MMC war eine Kombination der Methoden von Rietveld-Verfeinerung, Verfeinerung an die PDF-Daten und Gitterenergieminimierung zielführend zur Bestimmung der Orientierungs-Fehlordnung von MMC im Kristall. MMC ist hierbei die erste organische Verbindung, deren Fehlordnung durch Anpassung an die PDF bestimmt werden konnte. [CS07] Große Erfolge konnten bei der Methodenentwicklung der PDF-Analyse erzielt werden. Die Bestimmung von Kristallstruktur organischer Verbindungen durch Anpassung an die PDF ohne vorherige Kenntnis der Gitterparameter oder Raumgruppe wurde durch die Entwicklung des PDF-Global-Fits erreicht. Lediglich die PDF-Kurve und eine Molekülstruktur werden als Input benötigt. Die Strukturlösung beruht auf einem globalen Optimierungs-Ansatz, bei welchem in ausgewählten Raumgruppen Zufallsstrukturen erzeugt werden. Die Zufallsstrukturen werden mit den experi¬mentellen Daten verglichen und entsprechend ihres Ähnlichkeitsindexes, basierend auf der Kreuz-Korrelation, sortiert. [CS08, CS09] Die vielversprechendsten Kandidaten werden in einem einge¬schränkten simulierten annealing-Ansatz an die experimentelle PDF angepasst. Eine nachfolgende Strukturverfeinerung der besten Strukturmodelle liefert die korrekte Kristallstruktur. Der Erfolg des PDF-Global-Fits wurde am Beispiel der Barbitursäure aufgezeigt: Ausgehend von 300 000 Zufallsstrukturen konnte die korrekte Kristallstruktur von Barbitursäure bestimmt werden. Barbitursäure ist hierdurch die erste organische Verbindung, deren Lokalstruktur durch Anpassung an die PDF bestimmt wurde, ohne Input oder Vorgabe von Gitterparametern oder Raumgruppe.[CS10]