Purpose: Immune-mediated graft-versus-tumor (GVT) effects can occur after allogeneic hematopoietic stem cell transplantation (HSCT), but GVT is tightly linked to its main complication, graft-versus-host disease (GVHD). Strategies aimed at modulating GVHD, while maintaining the GVT effect, are needed to improve the cure rate of transplant. Given the emerging role of Janus-activated kinase (JAK) signaling in lymphoproliferative and myeloproliferative diseases and its established function at dictating T-cell differentiation, we postulated that JAKs might be potential therapeutic targets through a pharmacologic approach.Experimental Design: We examined the effect of JAK1/JAK2 modulation by ruxolitinib in a mouse model of fully MHC mismatched bone marrow transplant comprising in vivo tumor inoculation.Results: JAK1/JAK2 inhibition by ruxolitinib improved both overall survival (P ¼ 0.03) and acute GVHD pathologic score at target organs (P 0.001) of treated mice. In addition, treatment with ruxolitinib was associated with a preserved GVT effect, as evidenced by reduction of tumor burden (P ¼ 0.001) and increase of survival time (P ¼ 0.01). JAK1/JAK2 inhibition did not impair the in vivo acquisition of donor T-cell alloreactivity; this observation may account, at least in part, to the preserved GVT effect. Rather, JAK1/JAK2 inhibition of GVHDwas associated withthe modulation of chemokine receptor expression, which may have been one factor in the reduced infiltration of donor T cells in GVHD target organs.Conclusions: These data provide further evidence that JAK inhibition represents a new and potentially clinically relevant approach to GVHD prevention.