Background
Contrast-induced acute kidney injury (CI-AKI) is the third most common cause of hospital-acquired renal failure. However, there is no effective treatment of CI-AKI, and its mechanism is unknown. Interestingly, atorvastatin has been reported to be effective in renal injury. Therefore, the aim of this study was to explore the effect and possible molecular mechanism of atorvastatin in CI-AKI.
Methods
On the CI-AKI in vitro model, rat tubular epithelial cells (NRK-52E) were treated with 18 mg I/ml meglumine diatrizoate (MEG) and then pretreated with atorvastatin. pcDNA3.1-TLR4 treatment was performed to overexpress toll-like receptor 4 (TLR4) in NRK-52E cells. Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) kits were used to detect NRK-52E cell viability as well as LDH release in each group, respectively; qRT-PCR to determine mRNA expression of TLR4 in cells; western blot to detect protein expression levels of pyroptosis-related proteins (NLRP3, caspase-1, ASC, and GSDMD) and TLR4/MyD88/NF-κB signaling pathway-related proteins (TLR4, MyD88, NF-κBp65, and p-NF-κB p65) in cells.
Results
MEG treatment significantly inhibited the viability of NRK-52E cells, increased pro-inflammatory factor levels and promoted pyroptosis, representing successful establishment of a rat tubular epithelial cell (NRK-52E) CI-AKI in vitro model. Notably, atorvastatin increased the activity of MEG-treated NRK-52E cells and alleviated cell injury in a concentration-dependent manner. In addition, atorvastatin significantly down-regulated the expression of TLR4 in MEG-treated NRK-52E cells. However, overexpression of TLR4 inhibited the effects of atorvastatin on increasing cell viability, alleviating cell injury, reducing pro-inflammatory factors (IL-1β, IL-6, and TNF-α) levels, and inhibiting apoptosis (by down-regulating the expression of NLRP3, caspase-1, ASC, and GSDMD). Furthermore, atorvastatin also inhibited the expression of TLR4/MyD88/NF-κB pathway-related proteins (TLR4, MyD88, and p-NF-κB p65).
Conclusion
Atorvastatin can attenuate CI-AKI through increasing the activity of MEG-treated renal tubular epithelial cells, relieving cell injury, as well as inhibiting pyroptosis and inflammation. More importantly, the mechanism was achieved by inhibiting the TLR4//MyD88/NF-κB signaling pathway.