Metabolic programs of immune cells are closely linked to their effector functions, where physiological molecules provide environmental cues and guidance. Exactly how it happens is still being unraveled. Insulin maintains normal blood glucose levels and glucose is the main source of energy and a precursor for many biomolecules in T cells, whereas γ-aminobutyric acid (GABA), best known as a neurotransmitter, is increasingly recognized as a regulatory molecule in the immune system. Here, we demonstrate that GABA-mediated reduction of metabolic activity and release of inflammatory molecules, including IFNγ and IL-10, was abolished in human CD4+ T cells, when the glucose concentration was elevated above normal levels. In a glucose concentration-dependent manner, insulin enhanced the GABAA receptors activated currents and GABA-dependent Ca2+ influx. GABA decreased, whereas insulin maintained glycolysis but in a SGLT (Na+-glucose transporter)-dependent manner, revealing expression of SGLTs in activated CD4+ T cells. The SGLTs antagonist phlorizin, alone or together with GABA, restored the inhibition of IFNγ and IL-10 release in presence of high glucose. This study exposes concerted effects of GABA, glucose and insulin on CD4+ T cells metabolic activity and release of inflammatory molecules, and identifies a role for SGLTs in CD4+ T cells function.