The L-arginine/nitric oxide synthase (NOS) pathway is considered to be altered in muscular dystrophy such as Becker muscular dystrophy (BMD). We investigated two pharmacological options aimed to increase nitric oxide (NO) synthesis in 20 male BMD patients (age range 21-44 years): (1) supplementation with L-citrulline (3 × 5 g/d), the precursor of L-arginine which is the substrate of neuronal NO synthase (nNOS); and (2) treatment with the antidiabetic drug metformin (3 × 500 mg/d) which activates nNOS in human skeletal muscle. We also investigated the combined use of L-citrulline (3 × 5 g/d) and metformin (3 × 500 mg/d). Before and after treatment, we measured in serum and urine samples the concentration of amino acids and metabolites of L-arginine-related pathways and the oxidative stress biomarker malondialdehyde (MDA). Compared to healthy subjects, BMD patients have altered NOS, arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) pathways. Metformin treatment resulted in concentration decrease of arginine and MDA in serum, and of homoarginine (hArg) and guanidinoacetate (GAA) in serum and urine. L-Citrulline supplementation resulted in considerable increase of the concentrations of amino acids and creatinine in the serum, and in their urinary excretion rates. Combined use of metformin and L-citrulline attenuated the effects obtained from their single administrations. Metformin, L-citrulline or their combination did not alter serum nitrite and nitrate concentrations and their urinary excretion rates. In conclusion, metformin or L-citrulline supplementation to BMD patients results in remarkable antidromic changes of the AGAT and GAMT pathways. In combination, metformin and L-citrulline at the doses used in the present study seem to abolish the biochemical effects of the single drugs in slight favor of L-citrulline.