Lithium has long been a primary drug used to treat bipolar mood disorder, even though the drug's therapeutic mechanisms remain obscure. Recent studies demonstrate that lithium has neuroprotective effects against glutamate-induced excitotoxicity in cultured neurons and in vivo. The present study was undertaken to examine whether postinsult treatment with lithium reduces brain damage induced by cerebral ischemia. We found that s.c. injection of lithium dose dependently (0.5-3 mEq͞kg) reduced infarct volume in the rat model of middle cerebral artery occlusion͞reperfusion. Infarct volume was reduced at a therapeutic dose of 1 mEq͞kg even when administered up to 3 h after the onset of ischemia. Neurological deficits induced by ischemia were also reduced by daily administration of lithium over 1 week. Moreover, lithium treatment decreased the number of neurons showing DNA damage in the ischemic brain. These neuroprotective effects were associated with an up-regulation of cytoprotective heat shock protein 70 (HSP70) in the ischemic brain hemisphere as determined by immunohistochemistry and Western blotting analysis. Lithium-induced HSP70 up-regulation in the ischemic hemisphere was preceded by an increase in the DNA binding activity of heat shock factor 1, which regulates the transcription of HSP70. Physical variables and cerebral blood flow were unchanged by lithium treatment. Our results suggest that postinsult lithium treatment reduces both ischemia-induced brain damage and associated neurological deficits. Moreover, the heat shock response is likely to be involved in lithium's neuroprotective actions. Additionally, our studies indicate that lithium may have clinical utility for the treatment of patients with acute stroke. cerebral ischemia ͉ heat shock factor 1 ͉ heat shock protein ͉ neuroprotection ͉ DNA damage L ithium has been extensively used in the treatment of bipolar mood disorder, although the mechanisms underlying the drug's therapeutic action remain unclear. There is growing evidence that lithium is neuroprotective against a variety of insults, such as glutamate-induced excitotoxicity, in cultured cells and animal models of diseases (1-3). The mechanisms underlying lithium-induced neuroprotection are complex and may include inactivation of N-methyl-D-aspartate receptors (4), activation of the phosphatidylinositol 3-kinase͞Akt cell survival pathway (5), enhanced expression of cytoprotective Bcl-2 (6, 7), and inhibition of glycogen synthase kinase-3 (8).The brain is extremely sensitive to ischemic insult, and the resulting brain damage is related to excitotoxicity. Development of neuroprotective agents against ischemia-induced brain damage has been a therapeutic strategy to reduce the mortality and morbidity associated with stroke. Animal models of brain focal ischemia primarily involve middle cerebral artery occlusion (MCAO). We previously found that lithium pretreatment decreased the infarct volume and neurological deficits in a permanent MCAO model of rats (9). The present study was undertaken to explor...