Angiogenesis and improved left ventricular function as a consequence of long-term bradycardia were first demonstrated in normal hearts, either electrically paced (rabbits, pigs) or treated with a selective sinus blocking drug alinidine (rats). Here we review the evidence that chronic heart rate reduction can have similar effects in the heart with compromised vascular supply, due to either hypertensive or haemodynamic overload hypertrophy (rats, rabbits) or ischaemic damage (rats, rabbits, pigs). Bradycardia induced over several weeks increased capillarity in all hypertrophied hearts, and in border and remote left ventricular myocardium of infarcted hearts. In some, but not all cases, coronary blood flow was improved by heart rate reduction, suggesting enlargement of the resistance vasculature in some circumstances. Cardiac or left ventricular function indices, which were depressed by hypertrophy or ischaemic damage, were preserved or even enhanced by chronic heart rate reduction. The expansion of the capillary bed in the vascularly compromised heart induced by bradycardia may be stimulated by mechanical stretch of the endothelium and/or VEGF activated by chamber dilation and myocyte stretch. The increased number of capillaries and more homogeneous distribution of capillary perfusion would support the better pump function, even in the absence of higher coronary flow. The beneficial impact of chronic heart rate reduction on myocardial angiogenesis and function in cardiac hypertrophy and infarction may be major factor in the success of beta-blockers in treatment of human heart failure.