Recently, with the development of RNA sequencing technologies such as next-generation sequencing (NGS) for RNA, numerous variations of alternatively processed RNAs made by alternative splicing, RNA editing, alternative maturation of microRNA (miRNA), RNA methylation, and alternative polyadenylation have been uncovered. Furthermore, abnormally processed RNAs can cause a variety of diseases, including obesity, diabetes, Alzheimer's disease, and cancer. Especially in cancer development, aberrant RNAs caused by deregulated RNA modifiers or regulators are related to progression. Accumulating evidence has reported that aberrant RNAs promote carcinogenesis in many cancers, including liver cancer, leukemia, melanoma, lung cancer, breast cancer, and other cancers, in which abnormal RNA processing occurs in normal cells. Therefore, it is necessary to understand the precise roles and mechanisms of disease-related RNA processing in various cancers for the development of therapeutic interventions. In this review, the underlying mechanisms of variations in the RNA life cycle and the biological impacts of RNA variations on carcinogenesis will be discussed, and therapeutic strategies for the treatment of tumor malignancies will be provided. We also discuss emerging roles of RNA regulators in hepatocellular carcinogenesis.