Cyclin-dependent kinase 8 (CDK8) has emerged as a promising target for inhibiting cancer cell function, intensifying efforts towards the development of CDK8 inhibitors as potential cancer therapeutics. Mutations in CDK8, a protein kinase, are also implicated as a primary factor associated with tumor formation. In this study, we identified potential inhibitors through virtual screening for CDK8 and single amino acid mutations in CDK8, namely D173A (Aspartate 173 mutate to Alanine), D189N (Aspartate 189 mutate to Asparagine), T196A (Threonine 196 mutate to Alanine) and T196D (Threonine 196 mutate to Aspartate). Four databases (CHEMBEL, ZINC, MCULE, and MolPort) containing 65,209,131 molecules have been searched to identify new inhibitors for CDK8 and its single mutations. In the first step, structure-based pharmacophore modeling in the Pharmit server was used to select the compounds to know the inhibitors. Then molecules with better predicted drug-like molecule properties were selected. The final filter used to select more effective inhibitors among the previously selected molecules was molecular docking. Finally, 13 hits for CDK8, 11 hits for D173A, 11 hits for D189N, 15 hits for T196A, and 12 hits for T196D were considered potential inhibitors. A majority of the virtual screening hits exhibited satisfactorily predict pharmacokinetic characteristics and toxicity properties.