Cartilage repair is the key to the treatment of joint-related injury. However, because cartilage lacks vessels and nerves, its self-repair ability is extremely low. Extracellular vesicles (EVs) are bilayer nanovesicles with membranes mainly composed of ceramides, cholesterol, phosphoglycerides, and long-chain free fatty acids, containing DNA, RNA, and proteins (such as integrins and enzymes). For mediating intercellular communication and regulating mechanisms, EVs have been shown by multiple studies to be effective treatment options for cartilage repair. This review summarizes recent findings of different sources (mammals, plants, and bacteria) and uses of EVs in cartilage repair, mechanisms of EVs captured by injured chondrocytes, and quantification and storage of EVs, which may provide scientific guidance for promoting the development of EVs in the field of cartilage injury treatment.