Tumor hypoxia is a physiologic barrier to radiotherapy and anti-tumor drug delivery. Numerous efforts have been made to overcome this barrier and to improve therapeutic outcomes. Strategies for targeting tumor hypoxia have included chemical radiosensitizers and hyperthermia, followed by combined synergic therapeutic modalities. Clinical hypoxia measurements and the development of molecular imaging agents prompted trials on dose escalation in external beam radiotherapy, which takes advantage of contemporary sophisticated radiation dose delivery techniques. Increases in our understanding of hypoxia-induced biological pathways have led to the investigation of various hypoxia targeting drugs. Radiolabeled hypoxia targeting drugs deliver radionuclides into hypoxic tumor cells and achieve highly localized cell death. In this manuscript, we briefly review the methods of targeting tumor hypoxia in radiotherapy. These include image guided dose escalation in external beam radiotherapy, radiosensitizers, and radiolabeled agents targeting hypoxia pathways and the receptors on hypoxic tumor cells. Our current understanding of tumor hypoxia is the culmination of the collective efforts of generations of researchers. New frontiers are continuing to expand, as new discoveries are being made on both the macroscopic and molecular levels.