Previous Monte Carlo investigations by Wojciechowski et al. have found two unusual phases in two-dimensional systems of anisotropic hard particles: a tetratic phase of four-fold symmetry for hard squares [Comp. Methods in Science and Tech., 10: 235-255, 2004 ], and a nonperiodic degenerate solid phase for hard-disk dimers [Phys. Rev. Lett., 66: 3168-3171, 1991 ]. In this work, we study a system of hard rectangles of aspect ratio two, i.e., hard-square dimers (or dominos), and demonstrate that it exhibits a solid phase with both of these unusual properties. The solid shows tetratic, but not nematic, order, and it is nonperiodic having the structure of a random tiling of the square lattice with dominos. We obtain similar results with both a classical Monte Carlo method using true rectangles and a novel molecular dynamics algorithm employing rectangles with rounded corners. It is remarkable that such simple convex two-dimensional shapes can produce such rich phase behavior. Although we have not performed exact free-energy calculations, we expect that the random domino tiling is thermodynamically stabilized by its degeneracy entropy, well-known to be 1.79k B per particle from previous studies of the dimer problem on the square lattice. Our observations are consistent with a KTHNY two-stage phase transition scenario with two continuous phase transitions, the first from isotropic to tetratic liquid, and the second from tetratic liquid to solid.