The synthesis of a series of co-oligomer amphiphiles by RAFT and their self-assembly behavior in water is described. These novel amphiphiles, comprised of styrene, butyl acrylate, and alkyl hydrophobes together with ionic acrylic acid and nonionic hydroxyethylacrylate hydrophilic moieties and with a total degree of polymerization from 5 to 17, represent a new class of small-molecule surfactants that can be formed from the immense potential library of all polymerizable monomers. Examples of micellar solutions and discrete cubic, hexagonal, lamellar, and inverted hexagonal lyotropic phases, as well as vesicle dispersions and coexisting lamellar phases, are reported and characterized by small-angle scattering. The variation of self-assembly structure with co-oligomer composition, concentration, and solution conditions is interpreted by analogy with the surfactant packing parameter used for conventional small-molecule amphiphile ABSTRACT: The synthesis of a series of co-oligomer amphiphiles by RAFT and their self-assembly behavior in water is described. These novel amphiphiles, comprised of styrene, butyl acrylate, and alkyl hydrophobes together with ionic acrylic acid and nonionic hydroxyethylacrylate hydrophilic moieties and with a total degree of polymerization from 5 to 17, represent a new class of smallmolecule surfactants that can be formed from the immense potential library of all polymerizable monomers. Examples of micellar solutions and discrete cubic, hexagonal, lamellar, and inverted hexagonal lyotropic phases, as well as vesicle dispersions and coexisting lamellar phases, are reported and characterized by small-angle scattering. The variation of self-assembly structure with co-oligomer composition, concentration, and solution conditions is interpreted by analogy with the surfactant packing parameter used for conventional small-molecule amphiphiles.