In this paper, a numerical method is used to investigate the conjugate heat transfer of a phase change material (PCM) suspension in a circular tube under external cooling convection. The following parameters and ranges were considered: dimensionless tube wall thickness, t w (0–0.5); wall-to-fluid thermal conductivity ratio, k w f * (0.1–10); volumetric fraction of PCM particles, c v (0.1); Biot number, B i o (1); Stefan number, Ste (0.1); and Peclet number, Pe (1000). The results show that the wall thermal conductivity considerably affects the outer/inner wall temperature of the tube, the average temperature of the working fluid, and the volumetric liquid fraction of PCM particles. Thus, wall conduction effects must be properly accounted for to model heat transfer in a PCM suspension in tube flow.