2009
DOI: 10.1103/physrevd.80.085007
|View full text |Cite
|
Sign up to set email alerts
|

Phase diagram and fixed-point structure of two-dimensionalN=1Wess-Zumino models

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

5
43
0

Year Published

2010
2010
2021
2021

Publication Types

Select...
4
3

Relationship

3
4

Authors

Journals

citations
Cited by 35 publications
(48 citation statements)
references
References 24 publications
5
43
0
Order By: Relevance
“…To find a manifestly supersymmetric flow equation in the off-shell formulation we extend our earlier results on the one-and two-dimensional Wess-Zumino models [13,15] to three dimensions. Since there are no Majorana fermions in three-dimensional Euclidean space we begin with a Minkowski spacetime formulation of the Wetterich equation [37,38]:…”
Section: Flow Equation At Zero Temperaturementioning
confidence: 78%
See 2 more Smart Citations
“…To find a manifestly supersymmetric flow equation in the off-shell formulation we extend our earlier results on the one-and two-dimensional Wess-Zumino models [13,15] to three dimensions. Since there are no Majorana fermions in three-dimensional Euclidean space we begin with a Minkowski spacetime formulation of the Wetterich equation [37,38]:…”
Section: Flow Equation At Zero Temperaturementioning
confidence: 78%
“…The present study builds on our earlier results on twodimensional supersymmetric field theories at zero temperature [13,14] as well as on supersymmetric quantum mechanics, where we have constructed a manifestly supersymmetric functional RG flow, see [15]. The twodimensional models possess an infinite series of fixed points described by two-dimensional super-conformal theories.…”
Section: Introductionmentioning
confidence: 76%
See 1 more Smart Citation
“…Here we implicitly assume that a supersymmetric action flows into another supersymmetric action, a fact which is confirmed by direct observation when using MS methods [21], but that can be proven explicitly using functional RG methods and choosing a supersymmetric cutoff [51][52][53][54][55].…”
Section: Jhep12(2017)132mentioning
confidence: 98%
“…These non-perturbative RG functions have been computed using the functional RG methods formulated in terms of a flow equation for the 1PI effective action [44]. Using a manifestly off-shell supersymmetric regularization [52,53], the functional RG equations for the present model have been derived and analyzed in [54,55] and were extended to arbitrary dimension 2 < d ≤ 4 in [51]. These methods allow for the construction of an RG which is manifestly off-shell supersymmetric at any scale and in any dimension as long as the supersymmetry imposed on the level of the action.…”
Section: Jhep12(2017)132mentioning
confidence: 99%