2013
DOI: 10.1209/0295-5075/101/38003
|View full text |Cite
|
Sign up to set email alerts
|

Phase diagram of sustained wave fronts opposing the flow in disordered porous media

Abstract: Using lattice Boltzmann simulations, we analyze the different regimes of propagation of an autocatalytic reaction front in heterogenous porous media. The heterogeneities of the porous medium are characterized by the standard deviation of its log-normal distribution of permeability and its correlation length. We focus on the situation where chemical reaction and flow field act in opposite directions. In agreement with previous experiments we observe upstream, downstream fronts as well as static, frozen ones ove… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
26
0
1

Year Published

2014
2014
2018
2018

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 24 publications
(29 citation statements)
references
References 30 publications
2
26
0
1
Order By: Relevance
“…The essential experimental picture [13] is reproduced and we identified a clear criterium that allows to discriminate between the possible scenarios shown in Fig.1. Supported by excellent agreement with ab initio simulations used to model the experiments [24], this validates the hypothesis that the depinning transition is controlled by a limited number of events, randomly spread over the medium.…”
supporting
confidence: 77%
“…The essential experimental picture [13] is reproduced and we identified a clear criterium that allows to discriminate between the possible scenarios shown in Fig.1. Supported by excellent agreement with ab initio simulations used to model the experiments [24], this validates the hypothesis that the depinning transition is controlled by a limited number of events, randomly spread over the medium.…”
supporting
confidence: 77%
“…We first recall briefly the origin of the directed percolation mapping. As discussed in previous work [23], the interface is able to propagate wherever the local flow velocity is lower than the chemical velocity (i.e., |U | < V χ ), but it can be blocked if the velocity is higher. A necessary condition to be pinned is the existence of a blocking (|U | > V χ ) path transverse to the flow direction, which defines a percolation criterion.…”
Section: Appendix: Directed Percolationmentioning
confidence: 70%
“…As a consequence of the flow opposing the front, static fronts have been found depending on the intensity of the the mean flow velocity U that is negative by convention. In previous studies [22][23][24] we have demonstrated that, depending on U , the system display three propagating regimes. If the flow magnitude is high enough, the front recedes downstream.…”
Section: Introductionmentioning
confidence: 80%
See 1 more Smart Citation
“…A klorit-tetrationát reakciót termosztált edényben lejátszatva, függőle-gesen lefelé haladó front esetén azt tapasztalták, hogy a porozitás csökkenésével az alakzatra jellemző maximális hullámszám értéke csökkent. D. Salin és csoportja is végzett néhány kísérletet pórusos közegű frontreakciók esetén [61][62][63], ám ezekben a front ellenében, vagy éppen a vele megegyező irányban történő reaktáns-áramoltatás hatását vizsgálták a jodát-arzénessav rendszerben. A közeg kialakításához kétféle méretű gyöngy keverékét használ-ták, és megállapították, hogy a permeabilitás növekedésével nőtt a front terjedési sebessége.…”
Section: A Pórusos Közeg áRamlást Befolyásoló Hatásaunclassified