2008
DOI: 10.1140/epjb/e2008-00359-6
|View full text |Cite
|
Sign up to set email alerts
|

Phase diagram of the Ising square lattice with competing interactions

Abstract: Abstract. We restudy the phase diagram of the 2D-Ising model with competing interactions J1 on nearest neighbour and J2 on next-nearest neighbour bonds via Monte-Carlo simulations. We present the finite temperature phase diagram and introduce computational methods which allow us to calculate transition temperatures close to the critical point at J2 = J1/2. Further on we investigate the character of the different phase boundaries and find that the transition is weakly first order for moderate J2 > J1/2.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

6
82
0
1

Year Published

2010
2010
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 69 publications
(89 citation statements)
references
References 38 publications
6
82
0
1
Order By: Relevance
“…The phase diagram of Figure 3 shows that obtained critical temperatures agree with the results of studies within Monte Carlo technique [12][13][14][15]23]. Once again finite size scaling analysis confirms an Ising-like behavior with universal critical exponents of the system with R < 0.5 and that order/disorder phase transition for R > 0.5 is nonuniversal (ν = 0.70 and γ = 1.726 ± 0.08 for R = 0.75 for example, the value has to be compared with the one in [12,13]).…”
Section: Resultssupporting
confidence: 80%
See 3 more Smart Citations
“…The phase diagram of Figure 3 shows that obtained critical temperatures agree with the results of studies within Monte Carlo technique [12][13][14][15]23]. Once again finite size scaling analysis confirms an Ising-like behavior with universal critical exponents of the system with R < 0.5 and that order/disorder phase transition for R > 0.5 is nonuniversal (ν = 0.70 and γ = 1.726 ± 0.08 for R = 0.75 for example, the value has to be compared with the one in [12,13]).…”
Section: Resultssupporting
confidence: 80%
“…To overcome the status quo and reach a stable low temperature pure phase, it was suggested to improve the jump algorithm by considering parallel tempering method [20]. Here the finite size scaling analysis on the obtained effective critical temperatures concludes an absence of phase transition in the thermodynamic limit [14,15]. In the present, we argue that no pure phase holds rather there are clusters with different ordered structures and sizes that interpenetrate each other well.…”
Section: Introductionmentioning
confidence: 56%
See 2 more Smart Citations
“…2 представлена фазовая диаграмма для наи-более изученного случая -модели Изинга на квадрат-ной решетке с конкурирующими антиферромагнитными взаимодействиями между ближайшими J < 0 и вторы-ми соседями J ′ < 0 (см., например, [7]). Из расчетов следует, что существует единственная точка фрустраций r = 0.5 (r = J ′ /J), причем нультемпературная энтропия S T →0 равна нулю во всем диапазоне r, в том числе и во фрустрационной точке, а температура фазового перехода во фрустрационной точке равна нулю.…”
Section: типы фазовых диаграммunclassified