We describe an interferometric method for phase difference amplification in near real-time using an optically addressed liquid crystal spatial light modulator (LCSLM). The LCSLM has a rise time of 30ms and a decay time of 40ms, a resolution of 50 lp/mm, and a diffraction efficiency of 30%. The interference fringes obtained by a Michelson interferometer serve as input into the write side of the LCSLM and two beams are used to illuminate the read side. The nonlinearity of the LCSLM recording material produces the high-order diffracted beams. The nth and -nth order diffracted beams interfere with each other and the phase difference amplification is carried out in near real-time. We have demonstrated that it is possble to achieve phase difference amplification by a factor of 6 using phase stepping methods.