2024
DOI: 10.1016/j.jmrt.2024.01.021
|View full text |Cite
|
Sign up to set email alerts
|

Phase-field modeling and Experimental investigation for rapid solidification in wire and arc additive manufacturing

Fuchen Wang,
Weipeng Chen,
Dong Wang
et al.
Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 38 publications
0
1
0
Order By: Relevance
“…Metal additive manufacturing involves multiple physical processes such as heat and mass transfer, phase transformation, grain growth, and molten metal flow. The complexity of the influencing factors in microstructure evolution poses challenges for alloy design and performance control in additive manufacturing [125][126][127]. The phase-field method utilizes order parameters to describe various complex microstructures, including gas/liquid/solid phases, grain shapes/orientations, and can directly incorporate field variables describing various physical processes (such as stress/strain, melt velocity, temperature, concentration, electric/magnetic fields, etc.).…”
Section: Grand Potential Phase-field Sintering Modelmentioning
confidence: 99%
“…Metal additive manufacturing involves multiple physical processes such as heat and mass transfer, phase transformation, grain growth, and molten metal flow. The complexity of the influencing factors in microstructure evolution poses challenges for alloy design and performance control in additive manufacturing [125][126][127]. The phase-field method utilizes order parameters to describe various complex microstructures, including gas/liquid/solid phases, grain shapes/orientations, and can directly incorporate field variables describing various physical processes (such as stress/strain, melt velocity, temperature, concentration, electric/magnetic fields, etc.).…”
Section: Grand Potential Phase-field Sintering Modelmentioning
confidence: 99%