Using X‐ray diffraction analysis, scanning electron microscopy, thermogravimetry, and measurements of the dielectric properties up to the MW frequency range, the characterization of Bi2Ti3TeO12, Bi2TiTeO8, and Bi6Ti5TeO22 compounds, which all include Te6+, was performed. As the processes of Te6+ reduction and the evaporation of TeO2‐containing species contribute to the presence of secondary phases, the preparation of single‐phase ceramics is rather difficult. To minimize the amount of secondary phases during the firing process, the pellets were muffled in a corresponding compound and then fired in an autoclave furnace under 10 bars of oxygen pressure. By sintering the Bi2Ti3TeO12, Bi2TiTeO8, and Bi6Ti5TeO22 between 840° and 1010°C, ceramics with ɛr ranging from 36 to 350, Q×f values from 220 to 12 500 GHz, and τf from +41 to +2600 ppm/K were obtained.