SrFe12−xNbxO19 (x = 0.00–0.15) was here synthesized by a conventional solid-state reaction method. Thermogravimetry and differential scanning calorimetry curves revealed the sample reactions at four temperature ranges, and the optimal reaction stability was obtained at 1240 °C. A single-phase polycrystalline form of SrFe12O19 was obtained until the substitution reached 0.09, and the average crystallite size was found to be in the range of 44.21–60.02 nm. According to Fourier-transform infrared spectra, the formation of Fe–O bonds occurred at 69 and 450 cm−1 in the M-type ferrite, while Raman spectra revealed that all the peaks in the sample corresponded to Raman vibration modes and M-type structures. Through the shift of the peaks, it is speculated that Nb5+ enters into the lattice. The hysteresis loops of the samples were measured by vibrating-sample magnetometry, and the calculated results demonstrated that the coercivity increased with increases in the doping amount (686.3 Oe). At the same time, the saturation magnetization remained at a large value (>72.49 emu/g), which has rarely been reported.