Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Traditionally, prostate cancer treatment, as well as all cancer treatment, has been designed to target the tumor cell directly via various hormonal and chemotherapeutic agents. Recently, the realization that cancer cells exist in complex microenvironments that are essential for the tumorigenic and metastatic potential of the cancer cells is starting the redefine the paradigm for cancer therapy. The propensity of prostate cancer cells to metastasize to bone is leading to the design of novel therapies targeting both the cancer cell as well as the bone microenvironment. Tumor cells in the bone interact with the extracellular matrix, stromal cells, osteoblasts, osteoclasts, and endothelial cells to promote tumor-cell survival and proliferation leading to a lethal phenotype that includes increased morbidity and mortality for patients with advanced prostate cancer. Several strategies are being developed that target these complex tumor cell-microenvironment interactions and target the signal transduction pathways of other cells important to the development of metastases, including the osteoclasts, osteoblasts, and endothelial cells of the bone microenvironment. Current and new therapies in metastatic prostate cancer will comprise a multitargeted approach aimed at both the tumor cell and the tumor microenvironment. Here, we review the current therapeutic strategies for targeting the prostate cancer-bone microenvironment and several single- and multiagent targeted approaches to the treatment of advanced prostate cancer that are under development.
Traditionally, prostate cancer treatment, as well as all cancer treatment, has been designed to target the tumor cell directly via various hormonal and chemotherapeutic agents. Recently, the realization that cancer cells exist in complex microenvironments that are essential for the tumorigenic and metastatic potential of the cancer cells is starting the redefine the paradigm for cancer therapy. The propensity of prostate cancer cells to metastasize to bone is leading to the design of novel therapies targeting both the cancer cell as well as the bone microenvironment. Tumor cells in the bone interact with the extracellular matrix, stromal cells, osteoblasts, osteoclasts, and endothelial cells to promote tumor-cell survival and proliferation leading to a lethal phenotype that includes increased morbidity and mortality for patients with advanced prostate cancer. Several strategies are being developed that target these complex tumor cell-microenvironment interactions and target the signal transduction pathways of other cells important to the development of metastases, including the osteoclasts, osteoblasts, and endothelial cells of the bone microenvironment. Current and new therapies in metastatic prostate cancer will comprise a multitargeted approach aimed at both the tumor cell and the tumor microenvironment. Here, we review the current therapeutic strategies for targeting the prostate cancer-bone microenvironment and several single- and multiagent targeted approaches to the treatment of advanced prostate cancer that are under development.
Cancer vaccines constitute a unique therapeutic modality in that they initiate a dynamic process involving the host's immune response. Consequently, (a) repeated doses (vaccinations) over months may be required before patient clinical benefit is observed and (b) there most likely will be a "dynamic balance" between the induction and maintenance of host immune response elements to the vaccinations vs. host/tumor factors that have the potential to diminish those responses. Thus "patient response" in the form of disease stabilization and prolonged survival may be more appropriate to monitor than strictly adhering to "tumor response" in the form of Response Criteria In Solid Tumors (RECIST) criteria. This can be manifested in the form of enhanced patient benefit to subsequent therapies following vaccine therapy. This article will review these phenomena unique to cancer vaccines with emphasis on prostate cancer vaccines as a prototype for vaccine therapy. The unique features of this modality require the consideration of paradigm shifts both in the way cancer vaccine clinical trials are designed and in the way patient benefit is evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.