5-Bromo-2-deoxyuridine (BrdU) is a thymidine analogue that is incorporated into replicating DNA. Although originally designed as a chemotherapeutic agent, sublethal concentrations of BrdU have long been known to alter the growth and phenotype of a wide range of cell types. Mechanisms underlying these BrdU-mediated effects remain unknown, however. We have characterized the effects of BrdU on A549 lung cancer cells by examining DNA damage responses, cell cycle effects and phenotypic changes. A549 cells express wild-type p53, but are p16-null. Sublethal concentrations of BrdU evoke a DNA damage response in these cells that involves the activation of Chk1, Chk2 and p53. Increased numbers of enlarged nuclei and multinucleated cells are evident in the treated populations. Cell cycle inhibition occurs, resulting in reduced proliferation and accumulation of cells in the S, G 2 /M and G 0 phases. BrdU induces an early inhibition of p21 expression that coincides with nuclear localization of proliferating cell nuclear antigen. Subsequently, p21 levels increase, whereas proliferating cell nuclear antigen levels decrease compared with control cells. Upregulation of p27 and p57 expression also occurs. By day 7 of exposure to BrdU, treated cells acquire a senescent-like phenotype with an increase in cell size, granularity and bgalactosidase activity. We conclude that BrdU induces a DNA damage response in A549 cells, which results in reduced proliferation mitotic exit and phenotypic changes that resemble senescence.